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Travelling-wave characteristics

This chapter introduces a new and special kind of motion; wave motion. There are two
large classes of waves: mechanical and electromagnetic waves. Waves can be further

classified into transverse and longitudinal waves.

Objectives

By the end of this chapter you should be able to:

= state what is meant by wave motion;

= distinguish between longitudinal and transverse waves,
* define amplitude, wavelength, period and frequency and state the

relationship between them, [ = +;

= state what is meant by crest and trough and identify these on a graph;
« find amplitude and period from a displacement-time graph;

* find amplitude and wavelength from a displacement—position graph;

+ understand the meaning of the terms wavefront and ray;

+ usey =Aif.

What is a wave?

Waves are a very special kind of motion that
differs significantly from the motion we have
studied in earlier chapters. To understand the
difference, and to appreciate this new kind of
motion, let us look at what we have learned in a
somewhat different way. If a stone is thrown at a
window and the window breaks, this is because
the stone transferred its kinetic energy from the
point at which it was thrown onto the window.
The stone exerted a force on the window (transfer
of momentum) and broke it. A wave is also a way
of transferring energy and momentum from one
place to another but without the actual largescale
mation of a material body. For example, light (a
kind of wave) from the sun arrives on earth
having travelled a large distance in a vacuum,
and upon arrival warms up the earth. A soprano
singing can break a crystal glass because energy
and momentum have been transferred through
air by a sound wave. '

Light is an example of a wave that does not
need a medium in which to travel. It can travel
in a vacuum as well as in solids (e.g. glass) or
liquids (e.g. water). Light is part of a large
family of waves called electromagnetic waves.
Sound, along with water waves, string waves,
etc., belongs to a family called mechanical waves.
These do require a medium for their
propagation. Sound, for example, cannot travel
in a vacuum. Sound can travel in solids and
liquids as well as, of course, in gases. Similarly,
water waves travel, not surprisingly, in water.

How do we describe a wave? A wave is always
associated with a disturbance of some kind. A rope
held tight is horizontal when no wave is
travelling on it. By moving one end up and

down, we create a disturbance and individual
points on the rope are now higher or lower than
their original undisturbed positions. In the case
of sound, the density of air becomes successively
higher or lower when a sound wave travels
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through the air compared with when there is no
sound wave. (The case of light is a bit more
complicated and we will not discuss it here.)
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Note that in all the examples we have talked
about, there is no large-scale motion of the
medium. Points on a rope oscillate up and
down, and molecules in air move back and
forth along the direction of a sound wave that
is travelling through the air. This is local, small-
scale motion; the material of the medium does
not itself travel large distances.

Transverse and longitudinal
waves

:inﬂ'mumentum:ﬁ'om' Eegee)

In addition to the division into mechanical and
electromagnetic, waves can be further divided
into two classes. The first class is called
transverse and consists of those waves in which
the disturbance is at right angles to the direction
of propagation of the wave. A typical example is
a wave on a string: the direction of propagation
is along the string but the disturbance is at
right angles to the string (see Figure 2.1).
Electromagnetic waves are also transverse.

The second class is called longitudinal and
consists of those waves in which the disturbance

is along the direction of propagation of the wave.

A typical example is sound: if we imagine that a
sound wave is moving from left to right in a
thin tube, the disturbance is the motion of air
molecules back and forth along the tube. In
Figure 2.2 the dots represent molecules of air.
In the top picture the molecules are equally
spaced, representing the gas in its equilibrium
state. As the wave passes through the gas, the

Figure 2.1 A transverse wave on a string travelling
to the right. At the early time of the top picture,
the parts of the string marked are at their
maximum displacement above and below the
equilibrium position of the siring. Some time
later the left part has moved up and the right
part down - their motion is at right angles to
the direction of motion of the wave.
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Figure 22 In a longitudinal wave, molecules
execute simple harmonic motion along the
direction of propagation of the wave,

molecules move to the right or left. As they do
so they create regions of higher than normal
density (compressions) and regions of lower
than normal density (rarefactions). For
convenience we have marked one molecule grey
to indicate that molecules execute simple
harmonic oscillations about their equilibrium
positions (dotted line for the grey molecule).
Figure 2.3 shows the compressions and
rarefactions that occur in the medium in which
the wave moves.

4 compressions 1 4 rarefactions ¢

Figure 2.3 The motion of the molecules causes
compressions and rarefactions in the medium
in which the wave moves,
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Wave pulses

To help us to understand waves we will start
with a simple case, that of a wave pulse. If you
tie one end of a rope to a wall and move the
other end sharply up and then back down to its
starting position, you will produce a wave pulse
that will travel along the rope. It looks like
Figure 2.4 (this is idealized to a triangular
pulse — the real pulse would be curved):
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Figure 2.4 The pulse is moving to the right. The
disturbance is normal to the direction of
motion,

If your hand is first moved down below the rope
then back up to the starting point, continues up
above the rope and finally back down to the

starting point, the pulse will look like Figure 2.5.
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Figure 2.5 A full pulse travelling to the right.

It takes a certain time for this disturbance to
move along the rope (i.e. for this wave pulse to
reach another point in the rope). The wave
pulse travels with a certain speed down the
rope. In the case of the wave pulse on the rope,
the speed of the pulse is determined not by the
way in which the pulse was created (big or
small pulse, wide or narrow) nor by how fast or
slow your hand moved the rope; rather, it is

determined by the tension T in the rope and
the mass per unit length g = T of the rope.
Although not required for examination

purposes, it is good to know the following:

» The speed of the pulse on the stringis |
given by
ﬁ T
V.= ]—
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The speed of the wave is determined by
the properties of the medium and not by
how the wave is created.

The greater the tension in the medium, the
greater the speed of the wave produced. You can
convince yourself that the speed is greater
when the tension is greater by creating pulses
on a slinky, which can be kept at various
tensions by having it stretched by different
amounts. You will then also see that v is
independent of the shape of the pulse you
produce and of how fast you produced it.

The statement that the speed of the pulse is
independent of the amplitude is true provided
the amplitude is not too big. If the amplitude is
big, then the string is more stretched and thus
the tension is greater, implying a greater pulse
speed. Not too big an amplitude means not big
compared with the length of the string.

Travelling waves

In the previous section we saw how a single
pulse can be produced on a stretched rope. We
can create a travelling wave if we now produce
one pulse after another. If, in addition, the
agent forcing the rope up and down executes
simple harmonic motion, then the wave will
look like a sine wave (also called a harmonic
wave) — see Figure 2.6 (top).

If the sequence of pulses produced are square
pulses, then the wave generated is a travelling
square wave - see Figure 2.6 (bottom).
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Figure 2.6 A periodic sine wave and a periodic
square wave.,

Harmonic waves are very important because
any periodic disturbance can be expressed as a
sum (superposition) of a number of harmonic
waves. This is a general theorem in
mathematics known as Fourier's theorem.

Harmonic waves

A simple way of producing harmonic waves is to
attach one end of a rope to a tuning fork, as
shown in Figure 2.7, If the tuning fork is then
made to oscillate, one full wave will be
produced on the rope after a time equal to the
period of the tuning fork.
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Figure 2.7 A full wave is produced in a time equal
to one period.
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After a second full period, a second full wave
will be produced (see Figure 2.8). The original
full wave has moved forward a distance equal to
the wavelength.

wave produced
first
=2T

two full waves

Figure 2.8 Two full waves are produced in
sequence by the oscillating tuning fork.

¥ It thus follows that, since the wave moves
forward a distance equal to a wavelength-
in a time equal to one period, the speed
of the wave is given by
X

=

Since one full wave is produced in a time of T s,
it follows that the number of full waves
produced in 1sis 1/7. This is the frequency.

» The number of full waves producedin1s
.wcaﬂgdﬂ:eﬁequmcyufrhewmm '
= +. The unit of frequency is the
inverse second, which is given the special
name hertz (Hz). In terms of frequency
the wave speed is thus

_ v=axf

Waves can be represented graphically. This is a
bit complicated because a wave depends on
distance (where along the wave are we
looking?) as well as time (at what time are we
looking at the wave?). First we have to decide
how we will quantify the ‘disturbance’ of the
wave. For a wave on a string the obvious
choice is to measure the height of a point on
the string above or below the undisturbed
position of the string. The disturbance here is
thus the displacement of a point on the string
and is measured in units of length. We
normally denote this displacement by y,
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which will be a function of distance (x) and
time (I).

In the case of sound, the disturbance may be
associated with the density of the medium
through which sound propagates. We may then
define the difference y, = p — pp as the
displacement of density (p) relative to the
equilibrium density of the medium when no
sound is present in it (pg). The displacement
here has units of density and is also a function
of position and time. In the case of sound, we
could equally well define displacement as the
difference y, = p — po, which is the difference
between the pressure of the medium when
sound is present and the equilibrium pressure
when no sound is present. Displacement would
then have units of pressure.

This discussion can be generalized to all waves.
All waves have a displacement that is the
difference of some quantity and the
equilibrium value of that quantity when no
wave is present. The displacement of any wave
is a function of position and time. We may
therefore represent waves in graphs of
displacement versus position (distance) and
graphs of displacement versus time.

Let us consider a wave propagating along a
string from left to right. The left end of the
string is represented by x = 0 m and any other
point on the string is specified by giving its
corresponding x coordinate (see Figure 2.9).

string
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Figure 2.9,

As the wave propagates along the string, we
would like to know the displacement at each
point on the string at a specific point in time, This
is given by a graph of displacement versus
position - Figure 2.10.

The first important piece of information from
such a graph is the wavelength.
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Figure 2.10 A graph of displacement versus
position tells us the disturbance of any point on
the string at a specific moment in time.
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This graph also tells us that at the point on the
string that is 0.5 m from the string’s left end
the displacement is zero at some point in time.
At that same point in time at a point 1.125 m
from the left end the displacement is 0.6 cm,
etc. Thus, a graph of displacement versus
position is like a photograph of the string taken
at a particular time. If we take a second
photograph of the string some time later, the
string will look different because the wave has
moved in the meantime. It might look like
Figure 2.11.
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Figure 2.11 A graph of the disturbance of any
point on the string at a later moment in time.
Note that every point has a different
disturbance from that shown in Figure 2.10.
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We see that the displacement at x = 0 m that
was zero in the first photograph is not zero
now. It is about 0.5 cm. The displacement at a
particular point on the string changes as time
goes on and thus we can graph it as a function
of time,

Figure 2.12 shows how the displacement of a
particular point on the string (the pointx = 0m
to be precise) varies as time goes on. This is a
graph that shows the variation of displacement
with time,
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Figure 2.12 A graph of displacement versus time
tells us the disturbance of a specific point on

the string as time goes on.

From these graphs we can deduce the following
information about the wave. From any graph we
see that the maximum displacement of the
wave is 0.6 cm. The wavelength of the wave can
be determined by looking at a displacement-
position graph. From Figure 2.10 it thus follows
that A = 0.5 m. To find the period we must look
at a displacement—time graph. From Figure 2.12 we
find I = 4.0 ms. Hence, the frequency is 250 Hz
and the speed of the wave is 125 m s, (Note
that by comparing Figures 2.10 and 2.11 we see
that the wave moved forward a-distance of

0.1 m. Since the speed of the wave is 125 m s,
it follows that the photograph of Figure 2.11
was taken 0.1/125 s = 0.8 ms later than that of
Figure 2.10.)

Consider now the wave of Figure 2.13. We
deduce that the disturbance is a pressure
measured in kPa. However, in this graph the
experimenter has not plotted the difference
of pressure and the equilibrium value of
the pressure. We may then deduce that the
pressure in the medium when no wave
travels through (the equilibrium pressure) is
4.0 kPa. We may also deduce that the
maximum displacement (the amplitude) is
0.5 kPa. The wavelength is 4.0 m and in the
absence of a displacement-time graph we can
say nothing about the period or frequency,
and hence speed, of this wave. On the other
hand, if we are given the additional
information that this is a sound wave of
speed 340 m s ', then we deduce that the
frequency is 85 Hz and so the period is

11.8 ms.
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Figure 2.13 A wave in which the disturbance is
about a non-zero value.

The wave of Figure 2.14 is an electromagnetic
wave in which the displacement is the electric
field measured in volts per metre. The amplitude
is 0.2V m ' and the period is 3 x 10~" 5. The
frequency is thus 3.33 x 10" Hz. If we are told
further that this wave moves in a vacuum

then we know that the speed of such a wave
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Figure 2.14 An electromagnetic wave as a function
of time,

is3x 10 ms™!
9.0 x 1077 m.
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The wavelength and frequency are two of the
characteristics of a wave. A third characteristic
is amplitude.
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The amplitude of a wave is a measure of the
energy the wave carries. In general, the energy
carried is proportional to the square of the
amplitude, which means that (all other things
being equal) a water wave of amplitude 2.0 m
carries four times as much energy as a water
wave of amplitude 1.0 m.

In the first diagram of Figure 2.15 the
amplitude of the wave is 2.0 cm. In the second
it is 2.0 cm as well, The dotted line at 4.0 cm
shows the equilibrium position, when no wave
is present. The 4.0 cm might represent the
height of a bit of water in a container. When
no waves are present on the surface of the
water, all points on the surface are 4.0 cm
from the bottom of the container. When a
small water wave is established in the
container, the distance of various points on
the surface varies as shown in the diagram. As
the amplitude is the maximum displacement
away from the equilibrium position, it is thus
2.0 cm.
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Figure 2.15 Diagrams showing the amplitude,
crests and troughs of a travelling wave. In the
second case, the equilibrium value is not at
zero,
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The diagrams in Figure 2.16 show the
variation of displacement with position at
various times. We see the meaning of the term
travelling wave. The crests of the wave move
forward,

=100 ms

m%/\ /\ /\5

r=25ms

-1
Figure 2.16 A sequence of pictures taken every
0.5 ms showing a travelling harmonic wave.
Note how the peaks move forward. We have
marked a point on the string to show that in

a transverse wave points on the string move
perpendicularly to the direction of the wave.
After a full period (T = 3.0 ms) a picture of the
rope looks like it did at the beginning

(t = 0 ms), which is what allowed us to
determine the period of the wave in the first
place. The speed of the wave is 33.3 m 5
(found by dividing the wavelength by the
period) and the frequency is 333 Hz.

Example questions

() T T P S S U N |
A radio station emits at a frequency of 90.8 MHz.
What is the wavelength of the waves emitted?

Answer

The waves emitted are electromagnetic waves and
move at the speed of light (3 % 10% m s7').
Therefore, from v = A f we find A = 3.3 m.

Q2 e e T RV A S AR Y VS VS S SR LR T
A sound wave of frequency 450 Hz is emitted
from A and travels towards B, a distance of 150 m
away. Take the speed of sound to be 341 m s,
How many wavelengths fit in the distance from A
to B?

Answer

The wavelength is

341
=—m
450
= 0.758 m

Thus the number of wavelengths that fit in the
distance 150 m is

150

~ 0.758
= 198 wavelengths (approximately)

()3 T T T S LT T eS P S FER
The noise of thunder is heard 3 s after the flash of
lightning. How far away is the place where
lightning struck? (Take the speed of sound to be
340ms ')

Answer

Light travels so fast that we can assume that
lightning struck exactly when we see the flash of
light. If thunder is heard 3 s later, it means that it
ook 3 s for sound to cover the unknown distance,
d. Thus

d= vt
=340 x Im
= 1020 m
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Water wave crests in a lake are 5.0 m apart and
pass by an anchored boat every 2.0 s. What is the
speed of the water waves?

Answer
5.0 i
v=—ms
2.0
=25ms"

()5 TG P TP s R P STy Y ]
A toothed wheel has 300 teeth on its
circumference. It rotates at 30 rpm (revolutions per
minute). A piece of cardboard is placed such that
it is hit by the teeth of the wheel as the wheel
rotates. What is the frequency of the sound
produced?

Answer

In 1 min the cardboard will be hit by a tooth
30 X 300 = 9000 times, which is 150 times in
1 5. The frequency of the sound is thus 150 Hz.

Q6 e T SRS TSI 11126 ST 0naEs)
A railing consists of thin vertical rods a distance of
2 cm apart. A boy runs past the railing at a speed
of 3 m s~' dragging a stick against the rods. What
is the frequency of the sound produced?

Answer

In 1 s the boy moves a distance of 3 m, or past
300/2 = 150 rods. The frequency of the sound is
thus 150 Hz.

Wavefronts

Imagine a wave propagating in some direction,
for example, water waves approaching the shore
(see Figure 2.17).

The direction of the waves is horizontal, so if
we imagine vertical planes going through the
crests, the planes will be normal to the

direction of the wave. These planes are called

Figure 2,17 A twodimensional wave,

wavefronts; and lines at right angles to them
are called rays.

wavefront

YY)
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wavelength
Figure 2.18 Surfaces through crests and normal to
the direction of energy propagation of the wave
are called wavefronts or wavecrests. Rays are
mathematical lines perpendicular to the
wavefronts in the direction of propagation of
the wave.

(A wavefront is properly defined through the
concept of phase. All points on a wavefront have
the same phase. This will be discussed in
Option G3.)

On the other hand, if we consider the surfaces
going through crests of water waves caused by a
stone dropped in the water, we would find that
in this case the wavefronts are cylindrical
surfaces (see Figure 2.19).
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Figure 2.19 Example of cylindrical wavefronts. The
cylinders go through the crests dnd are normal to
the plane of the paper. The rays are radial lines.

Example question

Q7 T T s pr s IS TRl I TR R T S
A stone dropped in still water creates circular
ripples that move away from the point of impact.
The initial height of the ripple is about 2,4 cm
and the wavelength is 0.5 m. Draw a sketch of
the displacement of the ripples as a function of
the distance from the point of impact.

Answer

The energy carried by the wave is distributed
along the {(circular) wavefronts. As the wave
moves away from the point of impact, the length
of the wavefront increases and so the energy per
unit wavefront length decreases. Thus, the
amplitude has to decrease as well. So we get the
graph shown in Figure 2.20.
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Figure 2.20.

The wavefronts of light waves leaving a point
source (a very small lamp) would be spherical.
We can thus speak of plane, cylindrical and
spherical waves, according to the shape of the
wavefronts. Note that cylindrical and spherical
waves tend to become plane waves very far away
from their source.

Questions

1 In football stadiums fans often create a ‘wave’
by standing up and sitting down again. What
determines the speed of the ‘wave'?

2 A number of dominoes are stood next to each
other along a straight line. A small push is
given to the first domino and one by one the
dominoes fall over. How is this an example of
wave motion? How can the speed of the wave
pulse be increased? Design an experiment in
which this problem can be investigated.

3 What is the wavelength that corresponds to a
sound frequency of:
(a) 256 Hz;
{b) 25 kHz?
Take the speed of sound to be 330 ms™'.

4 By making suitably labelled diagrams explain
the terms:

(a) wavelength;

(b) period;

(c) amplitude;

(d) crest;

(e} trough.

5 The tension in a steel wire of length 0.800 m
and mass 150.0 g is 120.0 N. What is the
speed of transverse waves on this string?
(Use v= /L)

6 A string has a length of 20.0 m and is kept at a
tension of 50.0 M. Its mass is 400.0 g. A
transverse wave of frequency 15.0 Hz travels
on this string.

{a) What is its wavelength?

{b) If the same wave is created on the same
kind of string (same mass per unit length
and same tension) but of double the
length, what will the wavelength of the

wave be? (Use v = J}}
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7 Astone is dropped on a still pond at t = 0.

The wave reaches a leaf floating on the pond

a distance of 3.00 m away. The leaf then

begins to oscillate according to the graph

shown in Figure 2.21.

{a) Find the speed of the water waves.

(b} Find the period and frequency of the
wave.

(¢} Find the wavelength and amplitude of the
wave.
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Figure 2.21 For question 7.

8 A sound wave of frequency 500 Hz travels
from air into water. The speed of sound in air
is 330 m s™" and in water 1490 m s~', What
is the wavelength of the wave in:

(a) air;
(b) water?

9 The speed of ocean waves approaching the
shore is given by the formula v = \/gh, where
h is the depth of the water. It is assumed here
that the wavelength of the waves is much
larger than the depth (otherwise a different
expression gives the wave speed). What is the
speed of water waves near the shore where
the depth is 1.0 m? Assuming that the depth of
the water decreases uniformly, make a graph
of the water wave speed as a function of
depth from a depth of 1.0 m to a depth of
0.30 m.

10 (a) Explain, in the context of wave motion,
what you understand by the term
displacement.

(b} Using your answer in (a), explain the
difference between longitudinal and
lransverse waves.

{c) A rock thrown onto the still surface of a
pond creates circular ripples moving away
from the point of impact. Why is more
than one ripple created?

() Why does the amplitude decrease as the
ripple moves away from the centre?

11 A ship sends a sonar pulse of frequency
30 kHz and duration 1.0 ms towards a
submarine and receives a reflection of the
pulse 3.2 s later. The speed of sound in water
is 1500 m s~ ', Find the distance of the
submarine from the ship, the wavelength of
the pulse and the number of full waves
emitted in the pulse.

12 Figure 2.22 shows three points on a string on
which a transverse wave propagates to the
right. Indicate how these three points will
move in the next instant of time.

Figure 2.22 For question 12,

13 How would your answers change if the wave
in question 12 were moving to the left?

14 Figure 2.23 shows a piece of cork floating on
the surface of water when a wave travels
through the water. On the same diagram draw
the position of the cork half a wave period later.

Figure 2.23 For question 14.
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15

Figure 2.24 shows the same wave at two

different times. The wave travels to the right

and the bottom diagram represents the wave

0.2 s after the time illustrated in the top

diagram. For this wave determine:

{a) the amplitude;

(b} the wavelength;

[c) the speed;

(d) the frequency.

(e} Can the graph be used to determine
whether the wave is transverse or
longitudinal?
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Figure 2.24 For question 15,

16

Figure 2.25 is a picture of a longitudinal wave
travelling towards the right taken at a specific
time. The density of the lines is proportional
to the density in the medium the wave travels
through.

17

18

19

20

(a) Draw this wave a very small interval of
time later.
(b) Indicate on the diagram the wavelength of

this wave.

Figure 2.25 For question 16.

Indicate on Figure 2.26 a compression, a
rarefaction and the wavelength. Draw the
picture of this wave half a period later.

Figure 2.26 For question 17.

By drawing suitable diagrams, explain the
difference between transverse and longitudinal
waves.

In the context of wave motion explain, with
the aid of a diagram, the terms:

{a) wavefront;

{b) ray.

An earthquake creates waves that travel in the
earth’s crust; these can be detected by seismic
stations. Explain why three seismic stations
must be used to determine the position of the
earthquake. Describe two differences in the
signals recorded by three seismic stations,
assuming they are at different distances from
the centre of the earthquake.





